
Quantum Entanglement

After a long break, I finally had the time to write up another short article
about an interesting in my opinion phenomenon. Quantum entanglement is a
known fact, but somehow to a lot of people outside the field of physics (and
sadly, to some people in the field) it remains as something mystical and unstud-
ied. Without going into philosophy, I decided to briefly derive the mathematical
principles leading to entanglement and quickly summarize the idea behind it.
This article should be comprehensible to everyone with basic knowledge of lin-
ear algebra and quantum mechanics. Come to think of it, prior knowledge of
quantum mechanics is not really a must, provided that the reader has a firm
grasp of what the term ”state” stands for. This is usually provided in more
general courses, for example an introductory course in atomic physics. Let us
begin:

Entanglement of pure states
Firstly, a Definition 1 A Pure quantum state is such state, that is expressed

as a vector in a complex Hilbert space and has unit length. That means that
for the pure state |ψ〉 and an arbitrary basis |u1〉, · · · , |un〉, the state |ψ〉 can be
expressed as

|ψ〉 = α1|u1〉+ · · ·+ αn|un〉

where
∑n

i=1|αi|2 = 1. Let us now clarify what exactly we call entanglement
in the case of pure states. Let |u1〉, · · · , |un〉 and |v1〉, · · · , |vm〉 be orthonormal
bases in the n and m dimensional Hilbert spaces Hn and Hm respectively. We
denote by Hcomposite the direct product of the spaces Hn Hm. Constructed in
this way, Hcomposite is a n ·m dimensional Hilbert space with an orthonormal
basis

|ui〉 ⊗ |vj〉 i = 1, 2, · · · , n, j = 1, 2, · · · ,m,

where |ui〉⊗ |vj〉 = |ui〉|vj〉 =
∑n

i=1

∑m
j=1 γij |ui〉|vj〉 and

∑n
i=1

∑m
j=1|γij |2 =

1.
Definition 2: A pure state |χ〉 ∈ Hnm is called separable if and only if

it can be written as a tensor product of states |ψ〉 =
∑n

i=1 αi|ui〉 ∈ Hn and
|ϕ〉 =

∑n
j=1 βj |uj〉 ∈ Hm, meaning that the state |χ〉 looks like

|χ〉 = |ψ〉 ⊗ |ϕ〉

If a state is not separable, it’s called entangled.

1



Let us clarify the situation with an example.
Consider the state |ψ+〉 = 1√

2
(|00〉 + |11〉). Obviously, it is a pure state

(you can show that, the calculation is trivial!) and belongs to H2 ⊗ H2. Let
|ϕ1〉 = α|0〉 + β|1〉, |ϕ2〉 = γ|0〉 + δ|1〉 be states in the Hilbert spaceH2 and
|α|2 + |β|2 = 1 and |γ|2 + |δ|2 = 1. Suppose that |ψ+〉 is separable, meaning
that it can be written as:

|ψ+〉 = |ϕ1〉 ⊗ |ϕ2〉 = (α|0〉+ β|1〉)⊗ (γ|0〉+ δ|1〉).

From this it follows that

1√
2

(|00〉+ |11〉) = αγ|00〉+ αδ|01〉+ βγ|10〉+ βδ|11〉.

This means that both αγ = βδ = 1√
2

and αδ = βγ = 0, which is a contradiction.

A contradiction means that our proposition was wrong! So, in fact |ψ+〉 =
1√
2
(|00〉+ |11〉) is an entangled state.

Entanglement of mixed states
Every pure state |ψ〉 can be equated to a density matrix operator, defined as

ρ = |ψ〉〈ψ|. Mixed states are a statistical “mixture” of density matrices of pure
states. Every density matrix, ρ, is a projection operator to a one-dimensional
space, meaning that it satisfies the equation ρ2 = ρ.

Let us consider a statistical mix of pure states ρi = |ψi〉〈ψi|, i = 1, 2, · · · , n
with probabilities pi, i = 1, 2, · · · , n. Then the density matrix operator of the
states can be written as

ρ =

n∑
i=1

piρi (1)

Note The density matrix has the following important properties – it is Her-
mitian, positive and Tr(ρ) = 1.

Definition 3: Let HA and HB be Hilbert spaces. We denote the density
matrix of the states in HA ⊗HB with ρ. The operator ρ is called separable if
there exists a series (ρi)

n
i=1 of positive real number, adding up to one, a series

of density matrices (ρAi )ni=1, corresponding to the states in HA and a series of
density matrices

(
ρBi
)n
i=1

corresponding to the states in HB such that,

ρ =

n∑
i=1

piρ
A
i ⊗ ρBi (1)

Boy, that was a mouthful! Let us paraphrase that a bit, to make it more
comprehensible. If a mixed state can be written as a convex combination of
direct products of density matrices, then it is separable. Equation (1) is more
restrictive than the famous Bell inequalities (of which I may at some point write
a post but here’s a link to Wikipedia), therefore each separable state satisfies
the Bell inequalities. (1) also applies for pure states. Sadly, the state ρ given by
(1) is not unique. Figuring out if a state is entangled is a hard question, except
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in the case of pure states, where we can use the process from the example given
earlier. There are developed procedures that can determine if a mixed state is
entangled, but they are not universal – they work only in special cases and are
far beyond the scope of this article.

Entropy of mixed states
In information theory, the Shannon entropy (also known as the Jenses-

Shannon divergence) is a measure for the expected information, contained in
a message. The quantum analog of that measure is the Von Neumann entropy.
In the classical world, the entropy of a random variable is never bigger than
that of coupled random variables. In the quantum case, however, there are
cases when the entropy of a system may be less than the sum of the entropies
of its subsystem.

Definition 4 Let ρ be a density matrix of a quantum system. The the Von
Neumann entropy is given by

S(ρ) = −tr(ρ log ρ).

Using spectral decomposition, the logarithm can be extended to operators

S(ρ) = −
n∑

i=1

(λi log λi).

Here and thereafter, the logarithms have base 2.
Every pure state has a spectrum of the type λ1 = 1, λ2 = 0, · · · , λn = 0.

That means that the Von Neumann entropy of a system of pure states is equal
to

S(ρ) = −1 log 1 = 0

Definition 5: A mixed state is called maximally mixed if it’s represented by
a density matrix ρ = 1

N 1 ∈ H, where N is the dimension of the space H. The
entropy of these states takes a maximum value and is equal to

S(ρ) = −
n∑

i=1

1

n
log

1

n
= log n.

This means that the Von Neumann entropy can be thought of as a measure
of uncertainty of a quantum state measurement.

We’re almost at the final example and the conclusion of this post. Before
that, however, we need to define what we mean by partial trace. For each
separable state ρAB = ρA ⊗ ρB , the partial traces are defined as following

trA(ρAB) = tr(ρA)ρB and trB(ρAB) = tr(ρB)ρA.

Because ρA and ρB are density matrices, they have trace equal to one. Then
the reduced density matrices can be expressed in terms of the partial traces:

ρA = trB(ρAB) and ρB = trA(ρAB)
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Since taking the trace is a linear operation, this is true for all states.
Definition 6: Let ρA, ρB and ρAB be the density matrices of the quantum

systems A, B and the composite quantum system AB, respectively. The total
Von Neumann entropy of the systems A and B is defined as

S(ρA, ρB) = S(ρAB).

Definition 7: Let ρA, ρB be the density matrices of the quantum systems A,
B. The conditional Von Neumann entropy is defined as

S(ρA|ρB) = S(ρA, ρB)− S(ρB).

We can now see that the quantum conditional entropy can be negative, which
is not possible in the classical case.

Ok! This got a bit technical and maths-y which, depending on your pref-
erence might be either very good or very boring. So to spice things up and to
summarize and conclude the whole post, I’ll give a final example. I urge you
to read and follow it carefully, because it’s a great insight on how all of this
machinery works.

Final Example (Huzzah!)
Let us consider an entangled state |ψ+〉 = 1√

2
(|00〉+ |11〉) in the system AB.

Writing the density matrix ρAB for the state |ψ+〉 we have

ρAB =

(
1
2 0 0 1

2 0 0 0 0
0 0 0 0 1

2 0 0 1
2

)
The spectrum of this operator is (1, 0, 0, 0), therefore the conditional entropy

of the state ρAB is

S(ρA|ρB) = − log 1 = 0

The reader may want to try to prove that

ρA = ρB =
1

2
(|0〉〈0|+ |1〉〈1|).

Then the spectra of the operators ρA and ρB is the set ( 1
2 ,

1
2 ). From here,

we can calculate the entropy of the operators ρA and ρB . We get

S(ρA) = S(ρB) = −1

2
log

1

2
− 1

2
log

1

2
= 1.

But what does this mean? Reading carefully, we just proved mathematically
the inequality S(ρA) ≥ S(ρAB). This means that the entropy of the subsystem is
greater than the entropy of the composite system! In layman terms (but without
losing any rigor), this means that knowing everything about the subsystem is
not enough to describe the composite system. This property only manifests
itself when we deal with entangled states.

In conclusion, quantum entanglement is a physical phenomenon, which man-
ifests when two or more particles interact in such a way that the quantum states
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of the particles cannot be described independently from one another. In those
case, the whole system is described by one entangled state. This has an effect of
the entropy, meaning if affects the amount of information needed for describing
the system. The phenomenon is described using the language of linear algebra,
via non-diagonal density matrices. Here our brief overview of entanglement
ends. If you want me to write up a post describing something which you have
an interest in, or you have noticed some mistakes, please leave your message in
the comments.
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